# Infrared and Variable-Temperature <sup>1</sup>H-NMR Investigations of Ambient-Temperature Ionic Liquids Prepared by Reaction of HCl with 1-Ethyl-3-methyl-1H-imidazolium Chloride

## John L. E. Campbell, Keith E. Johnson,\* and Jeff R. Torkelson\*

Department of Chemistry, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Received November 4, 1993®

HCl:ImCl ambient-temperature ionic liquids have been investigated through infrared and variable-temperature <sup>1</sup>H-NMR spectroscopy as a function of HCl mole fraction ( $Im^+ \equiv 1$ -ethyl-3-methyl-1H-imidazolium). The infrared spectrum of the dihydrogen trichloride ion, H<sub>2</sub>Cl<sub>3</sub>-, has been observed, apparently for the first time. The absence of significant molecular HCl as earlier proposed, is confirmed. Thermodynamic parameters for the reaction  $H_2Cl_3^{-1}$ + Cl<sup>-</sup>  $\Rightarrow$  2HCl<sub>2</sub><sup>-</sup>, in which all species are solvated, have been estimated by VT-NMR:  $\Delta H$  and  $\Delta S$  were determined as  $-22.8 \pm 1.0$  kJ mol<sup>-1</sup> and  $-31.8 \pm 2.9$  J K<sup>-1</sup> mol<sup>-1</sup> respectively. The minimum value of the equilibrium constant for the reaction HCl + Cl<sup>-</sup>  $\Rightarrow$  HCl<sub>2</sub><sup>-</sup>, is estimated to be on the order of 10<sup>4</sup>-10<sup>5</sup> L mol<sup>-1</sup>, considerably larger than that in molecular solvents. Im+ ring proton resonances have a marked dependence on the anion fractions of Cl-,  $HCl_2^-$ , and  $H_2Cl_3^-$ , with Im-H<sub>2</sub> being the most strongly affected. VT-NMR spectra of Im<sup>+</sup> indicate that for  $X_{HCl}$ < 0.5, all three ring protons are involved in cation-anion interactions while for  $X_{\rm HCl} > 0.5$ , Im-H<sub>2</sub> is dominant in mediating these. We have interpreted these results in terms of hydrogen-bonded aggregates of anions and cations, the nature of which depends on the ability of the anion population to form hydrogen bonds with Im<sup>+</sup>. At the extremes we suggest that these aggregates may range from extended structures involving hydrogen bonding to all three ring protons, to ion-pairs involving hydrogen bonding via Im-H<sub>2</sub>.

#### Introduction

Campbell and Johnson<sup>1a,b</sup> have recently reported evidence indicating that, in HCl:ImCl ionic liquids<sup>1c</sup> and in the Lewis basic region of the ternary system HCl:ImCl:AlCl<sub>3</sub>, proton speciation is governed substantially by the equilibrium

$$H_2Cl_3^- + Cl^- \rightleftharpoons 2HCl_2^- \tag{1}$$

The stoichiometric equilibrium constant for reaction 1 was determined through <sup>1</sup>H-NMR measurements as  $218 \pm 25$  for HCl:ImCl melts at 297 K. The maximum solubility of HCl in the HCl:ImCl system ( $P_{HCl} \leq 1$  atm) was found to correspond to an HCl mole fraction of about 0.67, i.e. the stoichiometry of  $H_2Cl_3$ . Though it could not be demonstrated unequivocally whether or not larger anions, e.g. H<sub>3</sub>Cl<sub>4</sub>-, contribute significantly at high HCl contents, the data were consistent with this possibility. It was concluded that molecular HCl probably does not contribute significantly to proton speciation in these systems. In the current paper, we report infrared spectra which provide direct confirmation of these conclusions. Although species of the form  $H_n Cl_{n+1}$ have been suggested to exist in several systems,<sup>1d-g</sup> the spectra reported here constitute the first spectroscopic observation of H<sub>2</sub>Cl<sub>3</sub>-, and perhaps H<sub>3</sub>Cl<sub>4</sub>-.

Reaction 1 may be rewritten in the form

$$Im^+H_2Cl_3^- + Im^+Cl^- \rightleftharpoons 2Im^+HCl_2^-$$
 (1a)

so as to emphasize that each anion is solvated to some extent;

reaction 1a does not necessarily imply simple electrostatic ionpair formation, but cation-anion interactions in general, whatever these might be, hydrogen bonding, for example. The physical and spectral properties of the AlCl<sub>3</sub>:ImCl system have a marked dependence on composition. The viscosity decreases sharply as the AlCl<sub>3</sub> mole fraction increases toward 0.5, and only slightly as it increases thereafter.<sup>2</sup> Similar, albeit purely qualitative, observations were made during investigations of the HCl:ImCl system.<sup>1</sup> <sup>1</sup>H- and <sup>13</sup>C-NMR chemical shifts,<sup>3-5</sup> and infrared frequencies<sup>6</sup> of Im<sup>+</sup> have composition dependencies similar to that of melt viscosity. Previous work with the AlCl<sub>3</sub>:ImCl system has shown that the chemical shifts of the  $Im^+-H_{2,4,5}$  ring protons have a strong dependence on composition and can be related to the anion fractions  $(\alpha)$  of the available counterions, in this case Cl<sup>-</sup>, AlCl<sub>4</sub><sup>-</sup>, and Al<sub>2</sub>Cl<sub>7</sub><sup>-,3,4</sup> Clearly, these spectral changes are manifestations of cation-anion interactions which govern the composition-dependent structure of the melts and hence their physical properties. Considerable evidence exists for a hydrogen bonding interaction between Im-H<sub>2</sub> and anions in the melt and for ImCl in CH<sub>3</sub>CN.<sup>5</sup> Ion pair formation has been suggested on the basis of infrared data.6 Wilkes and co-workers proposed a model of melt structure in which each Im<sup>+</sup> ion may interact with two anions, forming oligomeric stacks of alternating cations and anions; the anions are located above and below Im<sup>+</sup> ions with the latter species arranged in parallel planes.<sup>3,4,7</sup> This model does not recognize hydrogen-bonding interactions as being significant, though presumably such interactions could take place between stacked oligomers. By means of semiempirical MO calculations,

 (6) Tait, S.; Osteryoung, R. A. *Inorg. Chem.* 1984, 23, 4352–4360.
 (7) Dieter, K. M.; Dymek, C. J., Jr.; Heimer, N. E.; Rovang, J. W.; Wilkes, J. S. J. Am. Chem. Soc. 1988, 110, 2722-2726.

<sup>\*</sup> Author to whom correspondence should be addressed.

<sup>&</sup>lt;sup>†</sup> Present address: Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G2G2.

<sup>Abstract published in Advance ACS Abstracts, June 1, 1994.
(1) (a) Campbell, J. L.; Johnson, K. E. Inorg. Chem. 1993, 32, 3809-3815.
(b) Campbell, J. L.; Johnson, K. E. In Proceedings of the Eighth</sup> International Symposium on Molten Salts, St. Louis, MO, May 17-22, International Symposium on Motien Saits, St. Louis, MO, May 17-22, 1992; Blomgren, G., Gale, R., Kojima, H., Eds.; The Electrochemical Society Inc.: Pennington, NJ; 1992, pp 317-334. (c) Zawodzinski, T. A., Jr.; Osteryoung, R. A. Inorg. Chem. 1988, 27, 4383-4384. (d) Kaufler, F.; Kunz, E. Ber. Disch. Chem. Ges. 1909, 42, 385-392; 2482-2487. (e) McDaniel, D. H.; Valleé, R. E. Inorg. Chem. 1963, 2, 996-1001. (f) Fujiwara, F. Y.; Martin, J. S. J. Am. Chem. Soc. 1974, 31, 3980, 3985. (a) Shuppert I. W. Acadell, C. A. L. Chem. Blue, 1977. 3980-3985. (g) Shuppert, J. W.; Angell, C. A. J. Chem. Phys. 1977, 67, 3050-3056.

Fannin, A. A., Jr.; Floreani, D. A.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, J. S.; Williams, J. L. J. Phys. (2) Chem. 1984, 88, 2614-2621.

Wilkes, J. S.; Frye, J. S.; Reynolds, G. F. Inorg. Chem. 1983, 22, 3870-(3)3872.

<sup>(4)</sup> Wilkes, J. S.; Hussey, C. L.; Sanders, J. R. Polyhedron 1986, 5, 1567-1571.

<sup>(5)</sup> Avent, A. G.; Chalconer, P. A.; Day, M. P.; Seddon, K. R.; Welton, T. Proceedings of The Seventh International Symposium on Molten Salts, Montreal, 1990; Hussey, C. L., Flengas, S. N., Wilkes, J. S., and Ito, Y., Eds.; The Electrochemical Society Inc., Pennington, NJ, 1990; pp 98 - 133

Dymek *et al.* have shown that it is possible to account for infrared results by assuming a model in which each Im<sup>+</sup> cation is hydrogenbonded to three anions (Cl<sup>-</sup>) via the protons at the 2, 4, and 5 positions of the ring.<sup>8</sup> The crystal structure of ImCl indicates that each Im<sup>+</sup> has three chloride ions as nearest neighbors and in positions which suggest hydrogen bonding to the three ring protons.<sup>8</sup> The crystal structure of the corresponding iodide is characterized by hydrogen bonding between iodide and Im-H<sub>2</sub>.<sup>9</sup>

In the current work it is shown that in analogy to the AlCl<sub>3</sub>: ImCl system, <sup>1</sup>H-NMR chemical shifts of Im<sup>+</sup> ring protons can be related to the anion fractions of Cl<sup>-</sup>, HCl<sub>2</sub><sup>-</sup>, and H<sub>2</sub>Cl<sub>3</sub><sup>-</sup>. Variable-temperature (VT) <sup>1</sup>H-NMR data have been acquired in order to estimate thermodynamic parameters for reaction 1a in the HCl:ImCl system. Temperature dependencies of the Im<sup>+</sup> ring proton resonances determined as a function of melt composition are illuminating regarding cation interactions in HCl: ImCl ionic liquids.

#### **Experimental Section**

Materials. 1-Ethyl-3-methyl-1*H*-imidazolium chloride (ImCl) was synthesized as described previously.<sup>1a</sup> Anhydrous HCl was prepared by the reaction of concentrated hydrochloric and sulfuric acids (ACS Reagent grade). The resulting HCl was dried by passage through a column of aluminum chloride which had been purified by sublimation as described previously.<sup>1a</sup> Anhydrous DCl was prepared in an analogous fashion from D<sub>2</sub>SO<sub>4</sub> (Aldrich, 99.5 atom % D) and DCl (37% by weight in D<sub>2</sub>O, Aldrich, 99.5 atom % D). HCl:ImCl and DCl:ImCl ionic liquids were prepared by the slow addition of HCl/DCl to a known mass of ImCl; this reaction was conducted in "airless" glassware under an atmosphere of dry argon (HP). The HCl content of the melt was estimated from the mass before and after addition. All further manipulations were performed in a nitrogen-filled glovebox as described elsewhere.<sup>1a</sup> Where necessary, melt densities were measured using a density bottle of volume  $1.32 \pm 0.01$  cm<sup>3</sup>.

Infrared Spectroscopy. Infrared spectra were acquired with a Perkin-Elmer Series 1600 FT-IR spectrophotometer. The sample cell consisted of two NaCl plates between which were placed two layers of polyethylene film, each having a thickness of ca. 0.1 mm. In the case of high HCl content melts, failure to include polyethylene results in dissolution of the NaCl plates. After recording background spectra of the empty cell, a single drop of melt sample was placed between the polyethylene windows; this operation was performed in the glove box. In the case of melts with HCl mole fractions less than 0.5, the polyethylene layers were omitted. All spectra were background subtracted and are shown unsmoothed. Since the samples were run as thin films without spacers, sample thickness, and hence absorbances, were not highly reproducible. For this reason, absorbance axes have been neglected in the spectra, allowing only qualitative interpretation.

VT-NMR Spectroscopy. Variable temperature (297-347 K)<sup>1</sup>H-NMR spectra of HCl:ImCl ionic liquids were acquired with a Bruker AC 200 MHz spectrometer. The samples were contained in sealed glass capillaries which were placed in standard 5 mm NMR tubes and bathed in DMSO- $d_6$ . All shifts are referenced to TMS. Temperatures are accurate to  $\pm 0.5 \text{ K}$ .

### **Results and Discussion**

Infrared spectra of HCl:ImCl melts are illustrated as a function of composition in Figure 1. Infrared spectra of chloride-rich HCl:ImCl and DCl:ImCl ionic liquids appear in parts a, b, and e of Figure 1, respectively. Of principal interest is the broad absorption band centered near 1000 cm<sup>-1</sup> which corresponds to the linear, symmetric HCl<sub>2</sub><sup>-</sup> ion.<sup>10,11</sup> This band is similar to that recently reported by Trulove and Osteryoung for solutions of HCl in Lewis basic AlCl:ImCl melts,<sup>11</sup> and is observed to shift to lower frequencies upon substitution with deuterium (Figure 1e). Though the DCl<sub>2</sub><sup>-</sup> absorption is ill-defined in the spectrum



Figure 1. Infrared absorption spectra of HCl:ImCl and DCl:ImCl ionic liquids as a function of composition:  $X_{HCl} = (a) 0.39$ , (b) 0.49, (c) 0.59, (d) 0.67;  $X_{DCl} = (e) 0.45$ , (f) 0.66. All spectra were acquired at ambient temperature (298 K).

shown in Figure 1e, the decrease/increase in intensity near 1000/ 600 cm<sup>-1</sup> is clear (protium[Figure 1b]/deuterium[Figure 1e]). Evans and Lo noted that the deuterium spectra were associated with a lower intrinsic absorption intensity;<sup>10</sup> our results, and those of Trulove and Osteryoung, are in agreement in this respect.

Infrared spectra of chloride-deficient HCl:ImCl and DCl:ImCl (ca. 2:1) ionic liquids are illustrated in parts c, d, and f of Figure 1, respectively. It was not possible to fully subtract the CH stretching absorption corresponding to the polyethylene background. For this reason, and for the sake of clarity, the region from 3000-2850 cm<sup>-1</sup> has been replaced by a dashed line. Similar subtraction errors are observed near 1500 (e.g. Figure 1f) and below ca. 600 cm<sup>-1</sup>. The 2:1 HCl:ImCl melt (Figure 1d) exhibits an extremely broad absorption band centered near 1800-1900 cm<sup>-1</sup>, and other broad absorptions at 1086 and 943 cm<sup>-1</sup>. All of these absorptions shift to lower frequencies upon substitution with deuterium (Figure 1f). The high frequency band can be assigned to H<sub>2</sub>Cl<sub>3</sub>-, the dihydrogen trichloride ion. Ab initio molecular orbital calculations<sup>12</sup> indicate that the most intense IR bands of  $H_2Cl_3^-$  and  $D_2Cl_3^-$  ( $C_{2\nu}$ ) should occur near 2000 and 1400 cm<sup>-1</sup> respectively, in excellent agreement with the spectra of Figure 1. Of particular importance is the absence of any

Dymek, C. J., Jr.; Stewart, J. J. P. Inorg. Chem. 1989, 28, 1472-1476.
 Abdul-Sada, A. K.; Greenway, A. M.; Hitchcock, P. B.; Mohammed, T. J.; Seddon, K. R.; Zora, J. A. J. Chem. Soc., Chem. Commun. 1986, 1753-1754.

<sup>(10)</sup> Evans, J. C.; Lo., G. Y.-S. J. Phys. Chem. 1966, 70, 11-19.

<sup>(11)</sup> Trulove, P. C.; Osteryoung, R. A. Inorg. Chem. 1992, 31, 3980-3985.

<sup>(12)</sup> Chandler, W. D.; Campbell, J. L.; Johnson, K. E. To be submitted for publication.

Table 1. Infrared Absorption Frequencies and Assignments (cm $^{-1}$ ) for HCl:ImCl Ionic Ligands

| 0.64:1 HCl:IMCl    |            | 2:1 HCl:ImCl              |          |                                                                     |  |  |
|--------------------|------------|---------------------------|----------|---------------------------------------------------------------------|--|--|
| freq               | intensa    | freq                      | intens   | assignt                                                             |  |  |
| Imidazolium Cation |            |                           |          |                                                                     |  |  |
| 3144               | m          | 3149                      | m        | aromatic C–H str                                                    |  |  |
| 3086               | s, vb      | 3103                      | s, b     | aromatic C–H str                                                    |  |  |
| 2983               | m          | 2987                      | m        | aliphatic C–H str                                                   |  |  |
| 2947               | w, sh      | 2959                      | w        | aliphatic C-H str                                                   |  |  |
|                    |            | 2942                      | w        | aliphatic C–H str                                                   |  |  |
| 3868               | w, b       | 287 <b>8</b>              | vw, b    | interaction bands                                                   |  |  |
| 2823               | vw, sh     | 2827                      | vw, b    | interaction bands                                                   |  |  |
| 2739               | vw, vb     | 2740                      | vw, vb   | combination                                                         |  |  |
| 2670               | vw, vb     | 2670                      | vw, vb   | ring str overtone                                                   |  |  |
| 1573               | S          | 1572                      | S        | ring str sym                                                        |  |  |
| 1462               | m, b       | 1465                      | m        | ring str sym                                                        |  |  |
| 1428               | vw         | 1428                      | vw       | Me C–H b asym                                                       |  |  |
| 1388               | w          | 1388                      | w        | Me C-H b asym                                                       |  |  |
| 1345               | vw, sh     | 1345                      | vw, sh   | Me C–H b sym                                                        |  |  |
| 1336               | w          | 1336                      | w        | ring str sym                                                        |  |  |
| 1 <b>299</b>       | vw         | 1 <b>299</b>              | vw       | ring C–H b sym                                                      |  |  |
| 1236               | vw, sh     | 1236                      | vw, sh   | ring b overtone                                                     |  |  |
| 1172               | vs         | 1170                      | vs       | ring str sym                                                        |  |  |
| 1120               | w, sh      | 1120                      | w, sh    | ring C-H i/p b                                                      |  |  |
| 1090               | w          | 1 <b>090</b> <sup>b</sup> | w        | ring C-H i/p b                                                      |  |  |
| 1038               | vw         | 1030 <sup>b</sup>         | vw       | combination                                                         |  |  |
| 960 <sup>b</sup>   | w          | 960 <sup>6</sup>          | w        | C-H i/p b                                                           |  |  |
| 824                | m, b       | 826                       | m, b     | C-H i/p b                                                           |  |  |
| 757                | w, b       | 749                       | m, b     | ring o/p b asym                                                     |  |  |
| 700                | vw         | 700                       | vw       | combination                                                         |  |  |
| 646                | m          | 646                       | m        | ring b asym                                                         |  |  |
| 621                | ms         | 620                       | ms       | ring b asym                                                         |  |  |
| 597                | mw         | 597                       | mw       | ring b asym                                                         |  |  |
|                    | Pro        | oton Anions (S            | ee Text) |                                                                     |  |  |
| 2026               | w, vb      | · ·                       | - ,      | $HCl_{2}^{-}$ overtone $(2\nu_{2})$                                 |  |  |
|                    | ,          | 2200-1600                 | vs       |                                                                     |  |  |
|                    |            | several vb                |          | H <sub>2</sub> Cl <sub>3</sub> -, H <sub>3</sub> Cl <sub>4</sub> -? |  |  |
|                    |            | bands:                    |          |                                                                     |  |  |
|                    |            | 2144, 1890.               |          |                                                                     |  |  |
|                    |            | 1744                      |          |                                                                     |  |  |
| 1150-750           | s, several |                           |          | $HCl_{2}^{-}(\nu_{2},\nu_{3})$                                      |  |  |
| -                  | vb bands   |                           |          |                                                                     |  |  |
|                    |            | 1086                      | s, vb    | $HCl_{2}^{-?}, H_{n}Cl_{n+1}^{-?}$                                  |  |  |
|                    |            | 942                       | m. vb    | . /                                                                 |  |  |

<sup>a</sup> s, m, w, v, b, and sh stand for strong, medium, weak, very, broad, and shoulder respectively. <sup>b</sup> Observed only in spectra of DCI:ImCl melts.

significant absorption which might be associated with molecular HCl (broad absorbances in the range 2600–2800 cm<sup>-1</sup>).<sup>11</sup> This is in agreement with the view<sup>1a</sup> that molecular HCl does not contribute significantly to proton speciation in HCl:ImCl melts; *i.e.*, HCl is extensively solvated in these systems. This is also true for AlCl:ImCl melts for which chloride is in excess, *i.e.* basic melts.<sup>13</sup>

Infrared absorption frequencies and relative intensities for chloride-rich and chloride-deficient melts are summarized in Table 1. Assignments of Im<sup>+</sup> vibrations are based on those of Tait and Osteryoung.<sup>6</sup> Assignments for the HCl<sub>2</sub><sup>-</sup> and H<sub>2</sub>Cl<sub>3</sub><sup>-</sup> ions appear at the bottom of Table 1. Evans and Lo observed the  $\nu_2$  and  $\nu_3$ fundamentals of HCl<sub>2</sub><sup>-</sup> as strong, broad absorptions at 1150/950 and 800 cm<sup>-1</sup> respectively (HCl<sub>2</sub><sup>-</sup> in CH<sub>3</sub>CN).<sup>10</sup> For Lewis basic AlCl<sub>3</sub>:ImCl, Trulove and Osteryoung observed these at 1140/ 984 and 802 cm<sup>-1</sup>.<sup>11</sup> Weak, broad absorbances at 2040 and 1600  $cm^{-1}$  in  $CH_3CN^{10}$  and at 2014 and 1562  $cm^{-1}$  in Lewis basic AlCl<sub>3</sub>:ImCl<sup>11</sup> were assigned to the first overtones of  $\nu_2$  and  $\nu_3$ respectively. In the present work, the 984-cm<sup>-1</sup> absorption was observed, though the 1140-cm<sup>-1</sup> absorption and the  $\nu_3$  band and its overtone are obscured by the Im<sup>+</sup> absorptions. In benzene,<sup>10</sup> the  $v_1$  mode was observed as a weak, broad absorption near 240 cm<sup>-1</sup>, beyond the limits of the present investigation.

 Table 2.
 VT-<sup>1</sup>H-NMR Data for the Acidic Proton in HCl:ImCl

 Ionic Liquids:
 Chemical Shift of Acidic Proton as a Function of

 Temperature (ppm vs TMS)
 Function of

|                        | VT- <sup>1</sup> H-NMR data |        |        |        |              |        |  |
|------------------------|-----------------------------|--------|--------|--------|--------------|--------|--|
| $X_{\mathrm{HCl}^{a}}$ | 297 K                       | 307 K  | 317 K  | 327 K  | 337 <b>K</b> | 347 K  |  |
| 0.375                  | 13.519                      | 13.471 | 13.420 | 13.366 | 13.316       | 13.258 |  |
| 0.473                  | 13.265                      | 13193  | 13.118 | 13.039 | 12.960       | 12.875 |  |
| 0.493                  | 13.083                      | 12.996 | 12.923 | 12.842 | 12.761       | 12.677 |  |
| 0.498                  | 12.989                      | 12.897 | 12.815 | 12.742 | 12.661       | 12.575 |  |
| 0.500                  | 12.909                      | 12.824 | 12.738 | 12.651 | 12.560       | 12.465 |  |
| 0.512                  | 12.752                      | 12.682 | 12.604 | 12.524 | 12.439       |        |  |
| 0.528                  | 12.329                      | 12.261 | 12.198 | 12.132 | 12.061       | 11.989 |  |
| 0.570                  | 11,102                      | 11.065 | 11.025 | 10.981 | 10.936       | 10.883 |  |
| 0.579                  | 10.845                      | 10.808 | 10.769 | 10.727 | 10.685       | 10.639 |  |
| 0.586                  | 10.670                      | 10.635 | 10.597 | 10.556 | 10.514       | 10.470 |  |

<sup>a</sup> Determined using abductive network<sup>14</sup>; see text.

It is not clear whether or not the bands at 1086 and 943 cm<sup>-1</sup> (Figure 1d) arise from HCl<sub>2</sub><sup>-</sup> or from H<sub>2</sub>Cl<sub>3</sub><sup>-</sup>. On the basis of the melt composition ( $X_{HCI} = 0.67$ ), assignment of these bands to hydrogen dichloride would imply the existence of larger anions in the melt, *i.e.* to account for the total HCl content. We have suggested that such ions, e.g. H<sub>3</sub>Cl<sub>4</sub>-, might contribute to speciation in the Lewis basic ambient-temperature systems,<sup>1a</sup> though the correspondence of the upper limit of HCl solubility with the stoichiometry of H<sub>2</sub>Cl<sub>3</sub>- suggests, circumstantially at least, that contribution of larger species is probably minimal. In the AlCl<sub>3</sub>: ImCl system, however, Al<sub>3</sub>Cl<sub>10</sub><sup>-</sup> becomes significant near 2:1 stoichiometry, and so we should suspect that in HCl:ImCl melts, H<sub>3</sub>Cl<sub>4</sub>-may reach significant concentrations near the upper limit of HCl solubility. Notably, the calculated vibrational spectrum for the  $H_2Cl_3$  ion  $(C_{2v})$  does not exhibit strong absorption intensities below  $1500 \text{ cm}^{-1}$ , 12 though here the symmetry of H<sub>2</sub>Cl<sub>3</sub>need not be restricted to  $C_{2\nu}$ , the minimum energy gas-phase geometry. Suffice it to say that the presence or absence of larger anions cannot be confirmed on the basis of the present data. For this reason, unequivocal assignments of the 1086- and 943-cm<sup>-1</sup> bands (Table 1) cannot be made.

**Thermodynamic Parameters for Reaction 1a.** Variabletemperature <sup>1</sup>H-NMR data for the acidic proton (HCl:ImCl systems) are tabulated in Table 2. For VT samples, melt compositions were estimated from the chemical shifts of the acidic proton and the three Im<sup>+</sup> ring protons. This was effected through synthesis of an abductive network<sup>14</sup> which correlated the binary HCl mole fraction,  $X_{HCl}$ , with  $\delta$ 's for the 4 proton environments (data from Figure 3 of this paper and Figure 2 of ref 1a). The network estimated  $X_{HCl}$  with an uncertainty less than ±0.002 unit (mole fraction). The data of Table 2 were then used to fit a function based on the assumption of rapid exchange in accord with reaction 1

$$\delta_{obs} = (1/X_{HCl}) \{ X(HCl_2^{-}) \delta(HCl_2^{-}) + 2.0X(H_2Cl_3^{-}) \delta(H_2Cl_3^{-}) \}$$
(2)

in which the mole fractions (X) and chemical shifts  $(\delta)$  are as defined previously.<sup>1a</sup> The concentration of each anion can be determined from  $X_{\text{HCl}}$  and  $X(\text{HCl}_2^{-})$ . The latter quantity can be calculated from the expression

$$X(\text{HCl}_{2}^{-})^{2} + \{2K/(4-K)\}\{(1-X_{\text{HCl}})X(\text{HCl}_{2}^{-}) - X_{\text{HCl}}(1-\frac{3}{2}X_{\text{HCl}})\} = 0 \quad (3)$$

which arises from application of the appropriate mass and charge balance equations to the expression for the stoichiometric equilibrium constant corresponding to reaction 1. The equilibrium constant is included in the form  $K = \exp\{(1/R)(\Delta S - \Delta H/T)\}$ .

<sup>(13)</sup> Trulove, P. C.; Sukumaran, D. K.; Osteryoung, R. A. Inorg. Chem. 1993, 32, 4396-4401.

<sup>(14)</sup> Campbell, J. L.; Johnson, K. E. Can. J. Chem. 1993, 71, 1800-1804.

The model encompassed by eqs 2 and 3 was fit to the data in terms of the variable parameters  $\delta(\text{HCl}_2^{-})$ ,  $\delta(\text{H}_2\text{Cl}_3^{-})$ ,  $\Delta H$ , and  $\Delta S$ . A total of 89 ( $X_{\text{HCl}}$ ,  $\delta_{\text{obs}}$ , T) data points were employed: 59 from Table 2 (297-347 K), and 30 from previous<sup>1a</sup> work (297 K). Nonlinear regression afforded  $\Delta H$  and  $\Delta S$  as  $-22.8 \pm 1.0$  kJ mol<sup>-1</sup> and  $-31.8 \pm 2.9$  J K<sup>-1</sup> mol<sup>-1</sup> respectively, corresponding to  $\Delta G^{297K} = -13.3 \pm 1.9$  kJ mol<sup>-1</sup>, in agreement with the value of  $-13.3 \pm 0.3$  kJ mol<sup>-1</sup> calculated from 297 K data<sup>1a</sup> ( $K = 218 \pm 25$ , 16 data points). The shifts of HCl<sub>2</sub><sup>-</sup> and H<sub>2</sub>Cl<sub>3</sub><sup>-</sup> were calculated as 13.54  $\pm$  0.02 and 8.58  $\pm$  0.01 ppm respectively, indistinguishable from those calculated from 297 K data alone (30 data points). The average absolute residual was less than 0.03 ppm/data point, and the correlation coefficient  $R^2$  was 0.9995.

Assumptions inherent in the fit of  $\Delta H$  and  $\Delta S$  include the following: (1) regardless of the HCl mole fraction  $(X_{HCl})$ , each protic anion may be considered to occupy a distinct environment which remains more or less constant over the range of  $X_{HCI}$ , *i.e.* so that the  $\delta$  of each environment may be considered constant for all  $X_{\text{HCl}}$ , and (2) for a given environment,  $\delta$  is independent of temperature, at least to the extent that changes in  $\delta_{obs}$  are due more to changes in the ratio of the environments than to changes in the shifts of the environments themselves. Though these are quite reasonable assumptions, it is acknowledged that some error must arise from their adoption. The concurrence of parameters obtained from VT data (297-347 K) and those obtained from 297 K data is encouraging regarding the viability of performing the fit outlined above. This agreement also suggests that over the range of composition employed in the VT study (0.37  $< X_{HCl}$ < 0.59) proton speciation is adequately defined by reaction 1; i.e., larger anions do not contribute significantly. This conclusion stems from the fact that  $K^{297}$  was initially determined<sup>1a</sup> for 0.38  $< X_{\rm HCl} < 0.51$ , over which reaction 1 most certainly governs proton speciation exclusively. At the extremes of temperature employed in this study, the anion fractions of HCl<sub>2</sub>- and H<sub>2</sub>Cl<sub>3</sub>in 1:1 HCl:ImCl are ca. 0.88 and 0.06 at 297 K, and 0.80 and 0.10 at 347 K. Thus at the highest temperature employed, about 20% of proton exists as dihydrogen trichloride. Reference to this melt as ImHCl<sub>2</sub> is therefore misleading as far as proton speciation is concerned.

Estimation of The Formation Constant for  $HCl_2$  in HCl:ImClSystems. The absence of significant molecular HCl in an HClsaturated melt ( $X_{HCl}$  ca. 0.67 under ca. 0.94 atm HCl, Figure 1d) makes it possible to establish minimum values of the equilibrium constants for the reactions

$$HCl + Cl^{-} \rightleftharpoons HCl_{2}^{-}$$
 (4a)

$$HCl + HCl_2^{-} \rightleftharpoons H_2Cl_3^{-}$$
(4b)

the difference of which is simply reaction 1. The maximum value for the Henry law constant  $(^{\max}K_H)$ , corresponding to the gasliquid equilibrium

$$HCl(g) \rightleftharpoons HCl(1)$$
 (5)

can be estimated based on the assumption that the maximum solubility of HCl (ambient pressure, 30 °C) is about 200 mM, *i.e.* the value reported for acidic AlCl<sub>3</sub>:ImCl melts.<sup>11</sup> Considering the infrared data (Figure 1d), this is likely an overestimate, and hence  $^{max}K_H$  may be taken as 0.2 mol L<sup>-1</sup> atm<sup>-1</sup>.

For a melt equilibrated with HCl at pressure  $P_{\text{HCl}}$ , the maximum liquid phase concentration of molecular HCl is given by

$$^{\max}C_{\mathrm{HCl}} = P_{\mathrm{HCl}}^{\max}K_{\mathrm{H}} \;(\mathrm{mol}\;\mathrm{L}^{-1}) \tag{5a}$$

In highly basic melts reaction 1a is driven far to the right so that  $H_2Cl_3^-$  can be neglected in the calculation of the anion fractions

of Cl- and HCl<sub>2</sub>-. In order to estimate minimum values of the K<sub>4</sub>, we prepared an HCl:ImCl melt of 1:1 stoichiometry and evacuated it to pressure  $P_{\rm HCl}$  at ambient temperature (296–298 K). After one hour of pumping the pressure over the melt dropped to 0.025 Torr. The melt compartment was sealed from the line and stirred for several hours during which time no change in pressure could be detected at a mercury manometer. However, since the readability of such a manometer is limited to about 0.1 Torr, we can conclude only that  $P_{\rm HCl}$  was within the range 0.025-0.1 Torr. The melt density was determined as 1.16 g cm<sup>-3</sup> and its composition was determined as  $X_{HCl} = 0.340$  by means of the titrimetric procedure described previously.1a Calculating the concentrations of Cl<sup>-</sup> and HCl<sub>2</sub><sup>-</sup> from  $X_{HCl}$  (3.4 and 3.6 mol L<sup>-1</sup> respectively), and  $^{max}C_{HCl}$  from eq 5a by confining  $P_{HCl}$  to the range above, affords  $^{\min}K_{4a}$  in the range of  $4 \times 10^4$  to  $1.6 \times 10^5$ L mol<sup>-1</sup>. Using this result in the expression  $K_{4a}/K_{4b} = K_{1a} = 2.2$  $\times 10^2$  yields min  $K_{4b}$  as  $1.8 \times 10^2$  to  $7.3 \times 10^2$  L mol<sup>-1</sup>. In further support of these estimates, we consider an analogous experiment involving the preparation of an HCl:ImCl melt for which  $X_{HCl}$ = 0.665; such a melt can be prepared for  $P_{\rm HCl}$  near ambient (ca. 0.95 atm).<sup>1a</sup> The melt density is about 1.15 g cm<sup>-3</sup>, and using the previously determined<sup>1a</sup> value for  $K_{1a}$ , one can calculate that the equilibrium concentrations of HCl<sub>2</sub>- and H<sub>2</sub>Cl<sub>3</sub>- are on the order of 0.1 and 5 mol  $L^{-1}$  respectively. Estimating the maximum concentration of molecular HCl as 0.2 M, one calculates the minimum value of  $K_{4b}$  as 2.5 × 10<sup>2</sup>, and hence that of  $K_{4a}$  as 5.5  $\times$  10<sup>4</sup>, in agreement with the ranges calculated above. We previously reported that a direct search simulation of NMR data according to the equilibria shown in (4), was optimized for  $K_{4a}$ (stoichiometric) on the order of  $10^{5.1b}$  Values of  $K_{4a}$  reported for AlCl<sub>3</sub>:ImCl melts at 30-90 °C are on the order of 10<sup>2</sup> L mol<sup>-1,13</sup> The reason for this large difference is not clear, though we have previously indicated<sup>1a</sup> that the determination<sup>13</sup> of  $K_{4a}$  from NMR data in Lewis basic chloroaluminates is prone to error due to the presence of H<sub>2</sub>Cl<sub>3</sub>-; as the ratio of total HCl to available chloride increases, that of  $H_2Cl_3$  is also expected to increase. NMR data employed for the calculation of  $K_{4a}$  included melts for which the proton concentration exceeded that of the available chloride, e.g.  $[Cl^{-}] = 76 \text{ mM}, [H^{+}] = 100 \text{ mM}^{13} \text{ so that some } H_2Cl_3^{-} \text{ might}$ be present.

In molecular solvents such as nitrobenzene and tetrachloroethane,  $K_{4a}$  is on the order of  $5 \times 10^2$  L mol<sup>-1</sup>;<sup>15,16</sup> we have argued previously that in ionic liquids such as HCl:ImCl and AlCl<sub>3</sub>: ImCl,  $K_{4a}$  should assume a larger value.<sup>1a</sup> The calculated min $K_{4a}$ indicates that in the case of HCl:ImCl ionic liquids, this is indeed true. In contrast, Trulove et al. have reasonably argued<sup>13</sup> that the small value of  $K_{4a}$  for Lewis basic AlCl<sub>3</sub>:ImCl melts, might be attributed to the enhanced ability of these melts to solvate chloride (relative to molecular solvents), though it is not immediately apparent why HCl:ImCl and AlCl<sub>3</sub>:ImCl liquids should behave so differently in this respect. It is likely that the difference lies in the presence of AlCl4-which is capable of forming a hydrogen bond with HCl (gas phase);<sup>12</sup> Cl-H---AlCl<sub>4</sub>- is analogous to HCl<sub>2</sub>, in which one chloride is replaced by tetrachloroaluminate. Formation of such a species in the presence of high concentrations of AlCl<sub>4</sub>-, i.e. weakly basic melts, would shift reactions 4a and 4b so as to disfavor the formation of H<sub>2</sub>Cl<sub>3</sub>and  $HCl_2^-$  so that the apparent value of  $K_{4a}$  would be reduced as observed by Trulove et al.13 Indeed, the latter value is more likely related to the equilibrium

$$Cl-H-AlCl_4^- + Cl^- \rightleftharpoons HCl_2^- + AlCl_4^-$$

It is notable that K determined for reaction 1 in 35:65 AlCl<sub>3</sub>: ImCl appeared smaller than that in HCl:ImCl melts, though this

<sup>(15)</sup> Herbrandson, H. F.; Dickerson, R. T., Jr.; Weinstein, J. J. Am. Chem. Soc. 1954, 76, 4046.

<sup>(16)</sup> Fujiwara, F. Y.; Martin, J. S. J. Chem. Phys. 1972, 56, 4091-4097.



Figure 2. C-H stretching region of HCl:ImCl ionic liquids as a function of composition:  $X_{HCl} = (a) 0.39$ , (b) 0.49, (c) 0.59.

could not be demonstrated conclusively within the accuracy of the experiment.<sup>1a</sup> Additionally, the formation of HCl-chloroaluminate adducts is consistent with shifts in IR frequencies and NMR chemical shifts observed for HCl in acidic AlCl<sub>3</sub>:ImCl systems.<sup>11</sup> The role of species such as  $Cl-H--AlCl_4^-$  will be discussed in the context of HCl solubility in the ternary HCl: ImCl:AlCl<sub>3</sub> system to be reported in a subsequent paper.

**Ionic Interactions in the HCl:ImCl System.**  $\Delta H$  for the gas phase reaction 1 has been estimated as -46 kJ mol<sup>-1</sup> by means of ab initio MO calculations.<sup>12</sup> Comparison to that calculated for the condensed phase reaction 1a reveals a considerable contribution from solvation. One concludes that the interaction of chloride with Im<sup>+</sup> is more exothermic than that of the protic ions. The Im<sup>+</sup> C-H stretching region "interaction bands" observed<sup>6,7</sup> in the corresponding chloroaluminate systems are observed in HCl:ImCl melts, though in contrast to the AlCl<sub>3</sub>: ImCl system, these bands persist to some extent as the HCl mole fraction increases from 0.5 (see Figure 2). For  $X_{HCI} = 0.59$  (Figure 2c) the aromatic C-H stretching absorptions near 3150 and 3100 cm<sup>-1</sup> clearly remain broadened compared to those in AlCl<sub>3</sub>:ImCl melts for which the chloride concentration is negligible. In the latter system these bands do not extend beyond the range of ca. 3100-3200 cm<sup>-1</sup> (Figure 4c of ref 7). Interaction bands in the range 2800-2900 cm<sup>-1</sup> persist for acidic HCl:ImCl melts (e.g. Figure 2c) but are absent in the corresponding chloroaluminate melts. These results indicate that the protic anions also interact with Im<sup>+</sup>, albeit less strongly than the chloride ion. Overall trends in shifts of peak frequencies with melt composition are consistent with those observed for the AlCl<sub>3</sub>:ImCl systems; frequency shifts were interpreted in terms of ion-pair formation.<sup>6</sup>

For the HCl:ImCl system, the chemical shifts of the Im<sup>+</sup> ring protons, and counterion fractions are illustrated as a function of composition in Figure 3 (297 K), in which it is apparent that the Im<sup>+</sup> ring proton shifts are most strongly dependent on the fraction of chloride ion. The H<sub>2</sub> proton is most strongly affected, though H<sub>4</sub> and H<sub>5</sub> are also involved, in agreement with results for AlCl<sub>3</sub>: ImCl.<sup>5</sup> Notably, chemical shifts of the ring protons in acidic



Figure 3. A. Variation of  $Im^+$  ring proton chemical shifts with  $X_{HCI}$ . B. Anion fractions. All data were acquired at 297 K.

melts are somewhat larger in the HCl:ImCl system compared to those in the AlCl<sub>3</sub>:ImCl system. This suggests that the protic ions effect greater deshielding of the ring protons than do chloroaluminate species. The observed shift for each of the ring protons can be fitted to a function of the form

$$\delta_{\text{obs}} = \delta_1 \alpha_1 + \delta_2 \alpha_2 + \delta_3 \alpha_3 \tag{6}$$

which corresponds to an ion-pair model in which each Im<sup>+</sup> cation interacts with a single anion; the quantities  $\alpha_1$ ,  $\alpha_2$ , and  $\alpha_3$  are the anion fractions of Cl<sup>-</sup>, HCl<sub>2</sub><sup>-</sup>, and H<sub>2</sub>Cl<sub>3</sub><sup>-</sup> respectively. The  $\delta$ 's are the chemical shifts of the ring proton in the ion-pair environment. The extended H-bonded aggregate model of Dymek *et al.* would correspond to the three equations of the form above, one for each ring proton. The fit of eq 6, however, cannot be distinguished from that of

$$\delta_{\text{obs}} = \delta_{11}\alpha_1^2 + 2\delta_{12}\alpha_1\alpha_2 + \delta_{22}\alpha_2^2 + 2\delta_{23}\alpha_2\alpha_3 + \delta_{33}\alpha_3^2 \quad (7)$$

corresponding to the oligomeric stacking model of Wilkes and coworkers. Each term corresponds to a distinct environment in which Im<sup>+</sup> interacts with two anions. A term corresponding to the environment  $\delta_{13}$  was not included, as the maximum value of  $\alpha_1\alpha_3$  is less than 0.004. Distinction between the stacked oligomer and ion-pair/extended H-bonded aggregate models would be possible only if several of the  $\delta$ 's could be held constant at known values. Nevertheless, the fits to these equations are instructive in that the changes in the fitted shifts with the various environments are indicative of the relative abilities of the anions to interact with Im<sup>+</sup>. The results of fits for Im-H<sub>2</sub>, Im-H<sub>4</sub>, and Im-H<sub>5</sub> tabulated in Table 3 indicate, as might be expected, that this ability decreases in the order Cl<sup>-</sup> > HCl<sub>2</sub><sup>-</sup> > H<sub>2</sub>Cl<sub>3</sub><sup>-</sup>, e.g. shifts in the HCl<sub>2</sub><sup>-</sup> ( $\delta_2$  or  $\delta_{22}$ ) and H<sub>2</sub>Cl<sub>3</sub><sup>-</sup> ( $\delta_3$  or  $\delta_{33}$ ) environments are

Table 3. Results of Nonlinear Fit of  $Im^+$  Ring Proton Chemical Shifts to Equations 6 and 7

| environment                                                       | Im-H <sub>2</sub>                       | ImH4                                     | Im-H <sub>5</sub>                         |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| Equation 6                                                        |                                         |                                          |                                           |  |  |  |  |  |  |
| δι                                                                | 10.04 ± 0.04                            | 7.69 ± 0.02                              | 7.83 ± 0.01                               |  |  |  |  |  |  |
| δ2                                                                | 8.39 ± 0.01                             | $6.97 \pm 0.00$                          | $7.05 \pm 0.00$                           |  |  |  |  |  |  |
| δ <sub>3</sub>                                                    | 8.27 ± 0.01                             | 6.87 ± 0.01                              | $6.94 \pm 0.00$                           |  |  |  |  |  |  |
| Equation 7                                                        |                                         |                                          |                                           |  |  |  |  |  |  |
| δ11                                                               | 9.86 ± 0.30                             | $7.88 \pm 0.14$                          | 8.01 ± 0.06                               |  |  |  |  |  |  |
| δ12                                                               | 9.26 ± 0.08                             | 7.30 ± 0.04                              | $7.41 \pm 0.02$                           |  |  |  |  |  |  |
| δ22                                                               | $8.47 \pm 0.02$                         | $7.03 \pm 0.01$                          | $7.12 \pm 0.00$                           |  |  |  |  |  |  |
| δ23                                                               | 8.33 ± 0.03                             | 6.94 🖿 0.01                              | $7.01 \pm 0.01$                           |  |  |  |  |  |  |
| δ <sub>33</sub>                                                   | $8.27 \pm 0.02$                         | $6.86 \pm 0.01$                          | 6.93 ± 0.00                               |  |  |  |  |  |  |
| R <sup>2</sup> (eq 6/eq 7) av:<br>abs residual<br>Sr <sup>b</sup> | 0.997/0.997<br>0.01/0.01<br>0.018/0.018 | 0.999/0.999<br>0.007/0.005<br>0.01/0.008 | 1.000/1.000<br>0.004/0.003<br>0.006/0.004 |  |  |  |  |  |  |

<sup>a</sup> ppm/data point. <sup>b</sup> Standard error of regression.

not widely different, but are considerably lower than those in the  $Cl^{-}(\delta_1 \text{ or } \delta_{11})$  environment. That chloride interacts more strongly with Im<sup>+</sup> than either of the protic anions is obvious from the fact that if one converts the chloride ions in ImCl to  $HCl_2^{-}$ , liquefication takes place!

Further insight into an ion-cation interactions is available from an examination of the temperature dependence of the Im<sup>+</sup> ring proton resonances. For a given value of  $X_{HCl}$  the variation of  $\delta(\text{Im}-\text{H}_2)$ ,  $\delta(\text{Im}-\text{H}_4)$ , or  $\delta(\text{Im}-\text{H}_5)$  with temperature approximates a linear function  $(R^2 > 0.99)$  with slope  $d(\delta(Im-H_i))/dT$ . The  $d(\delta(Im-H_i))/dT$  values are plotted as a function of  $X_{HCl}$  in Figure 4A. The anion fractions are also highly linear in temperature (for a given value of  $X_{HCl}$ ); the d $\alpha$ /dT values are plotted as a function of  $X_{HCI}$  in Figure 4B. The behavior of the  $d(\delta(Im-H_i))/dT$  (Figure 4A) is determined by two competing factors, namely the temperature dependence of anion fractions (Figure 4B) and the temperature dependence of cation-anion interactions. An increase in temperature shifts reaction 1 to the left; interaction of chloride with Im<sup>+</sup> results in deshielding of the ring protons and  $d(\delta(Im-H_i))/dT$  is positive. However, since dissociation is characterized by a positive entropy change, cationanion interactions are diminished with increasing temperature so that the ring protons experience greater shielding, *i.e.*  $d(\delta(Im - \delta))$  $H_i)/dT$  is negative. The sign of the observed  $d(\delta(Im-H_i))/dT$ will depend on the relative contributions of these processes. Only for  $X_{\rm HCl} < ca. 0.45$ , where  $\alpha_{\rm Cl}$  is significant, is cation-anion dissociation dominant in determining the sign of the  $d(\delta(H_i))/d$ dT. It is notable that it is also this region in which the  $d(\delta(Im))/dT$ dT for H<sub>2</sub>, H<sub>4</sub>, and H<sub>5</sub> are not widely different. As  $X_{HCl}$ approaches or exceeds 0.5, however,  $d(\delta(Im))/dT$  for H<sub>2</sub> diverges from that of H4 and H5, suggesting a general change in the nature of interactions determining the  $\delta(Im)$ . One presumes that in the oligomeric stacking model of Wilkes and coworkers, interactions may also take place between adjacent oligomeric stacks of alternating anions and cations. This would most likely occur via hydrogen bonding of anions in one stack, to Im<sup>+</sup> ring protons in adjacent stacks. We suggest that the most accurate model of melt structure is probably a hybrid of the Wilkes and Dymek models and that hydrogen bonding is the key interaction. The range over which the average hydrogen-bonded supramolecular structure extends through space is determined largely by the ability of the anion population to form hydrogen bonds. Extended aggregates are favored in the presence of high concentrations of chloride which, relative to the protic species, is most strongly polarizing by virtue of its higher charge density. When the chloride concentration becomes insignificant, the



Figure 4. A. Temperature dependence of Im<sup>+</sup> ring proton chemical shifts,  $d(\delta(Im-H_i))/dT vs X_{HCI}$ . B. Temperature dependence of anion fractions,  $d\alpha/dT vs X_{HCI}$ . Data were generated using thermodynamic parameters calculated for reaction 1a.

formation of hydrogen-bonded ion pairs may become more important in determining the structure of the melt, and hence its physical properties, *i.e.* viscosity, *etc.* The behavior of the  $d(\delta \cdot (Im-H_i))/dT$  for  $X_{HCI} > 0.5$  suggests that  $Im-H_2$  is the principal mediator of ion-pair formation. This is expected since  $Im-H_2$  is the most acidic ring proton. It has recently been reported, for example, that in the salts  $Im_2[MCl_4]$  ( $M \equiv Co$ , Ni), all three ring protons are hydrogen-bonded to chlorine, with  $Im-H_2$  forming the shortest hydrogen bond.<sup>17</sup>

The conclusions of earlier work<sup>1a</sup> concerning proton speciation in ambient-temperature molten salts have been confirmed spectroscopically, and thermodynamic parameters for reaction 1a have been evaluated for HCl:ImCl melts. It must be recognized that since these parameters contain a substantial contribution from solvation, they would be affected by the presence of tetrachloroaluminate, and thus do not apply to solutions of HCl in Lewis basic chloroaluminate melts. Minimum values for the formation constants of HCl<sub>2</sub><sup>-</sup> and H<sub>2</sub>Cl<sub>3</sub><sup>-</sup> (eq 4a,b) in HCl:ImCl ionic liquids have been established as ca.  $10^4$ - $10^5$  and  $5 \times 10^2$  L mol<sup>-1</sup> respectively. Im<sup>+</sup> ring proton chemical shifts have composition dependencies similar to those observed for the AlCl<sub>3</sub>: ImCl system. Ionic interactions in the HCl:ImCl system lead to the formation of hydrogen-bonded aggregates of anions and cations, the nature and extent of which depend on the ability of the anion population to form hydrogen bonds with Im<sup>+</sup>.

Acknowledgment. The authors thank The Natural Sciences and Engineering Research Council of Canada for support in the form of a scholarship to J.L.E.C.

<sup>(17)</sup> Hitchcock, P. B.; Seddon, K. R.; Welton, T. J. Chem. Soc. Dalton Trans. 1993, 2639-2643.